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Abstract The study involves finding exact eigenvalues of the radial Schrödinger
equation for new expansion of the anharmonic potential energy function. All analyti-
cal calculations employ the mathematical formalism of the supersymmetric quantum
mechanics. The novelty of this study is underlined by the fact that for the first time the
recurrence formulas for rovibrational bound energy levels have been derived employ-
ing factorization method and algebraic approach. The ground state and the excited
states have been determined by means of the hierarchy of the isospectral Hamil-
tonians. The Riccati nonlinear differential equation with superpotentials has been
solved analytically. It has been shown that exact solutions exist when the potential
and superpotential parameters satisfy certain supersymmetric constraints. The results
obtained can be utilized both in computations of quantum chemistry and theoretical
spectroscopy of diatomic molecules.

Keywords Factorization method · Riccati equation · Supersymmetric quantum
mechanics · Isospectral Hamiltonians · Anharmonic potentials

1 Introduction

One of the most important issues in non-relativistic quantum mechanics is to solve
the Schrödinger equation analytically for various singular potentials. In the recent
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Poland

2 Faculty of Computing, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
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years authors have analytically derived exact solutions for diverse potentials, i.a. the
fourth-order inverse power potential [1–3]:

V (r) = A1

r
+ A2

r2
+ A3

r3
+ A4

r4
. (1)

Supersymmetric quantummechanics (SUSYQM) is a theoretical conceptwhich has
been employed in many fields of physics and theoretical chemistry. This method is
widely used to solve the Schrödinger equation with various exactly solvable potential
energy functions. Kostelecky and Nieto [4] have computed low Z-alkali-metal-atom
transition probabilities between low-n states with the use of supersymmetric wave
function. Arai [5] demonstrated a class of supersymmetric quantummechanics whose
eigenvalues problem has a solvable spectrum. Similarly, in a review paper, Bougie
et al. [6] presented solvable models within the SUSYQM framework. The authors
prove that shape of invariance conditions allows to solve analytically many quantum
systems. The factorization method that is strongly connected with the SUSYQM has
been profoundly explored in recent years, for example by Mielnik. In one of his
papers [7] he considers the general solution of the Riccati type differential equation
associatedwith the Infeld–Hull factorizationmethod [8]. In particular,Mielnikwas the
one to introduce into theoretical physics a modified factorization method that enabled
to construct a one-parameter family of new exactly solvable potentials. It should be
noted that Fernández [9] applied this important method to investigate hydrogen-like
radial differential equation. He also constructed a new family of exactly solvable
potentials. Bagrov et al. [10] have established an interesting insight into connection
between this method and the Darboux transformation. The study presented in this
paper is strictly related to the SUSYQM and operators’ techniques connected with
the SUSYQM formalism. Therefore, the SUSYQM can be utilized with the integral
Darboux transformation to solve second-order differential equations. Moreover, Nieto
and Simmons [11] connected the SUSYQM, the factorizationmethod and theDarboux
transformation with the use of the algebraic approach.

In the present study we are solving analytically the Schrödinger equation with
new anharmonic oscillator which is expanded into convergent series of the modified
Kratzer-Fues variable. The crucial purpose of this paper is to determine a recurrence
formula for the ground vibrational state and the excited rovibrational states using alge-
braic approach within supersymmetric quantum mechanics. Satisfactory convergence
of this series permits the eigenvalues constructed to be used in theoretical spectroscopy
to reproduce IR and MW spectra.

2 Factorization method for the Schrödinger equation and background
information related to the SUSYQM

For a given potential energy function V (x) the Schrödinger equation is governed by
the following Hamiltonian operator (h̄ = 1, m = 1):
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Ĥ = −1

2

d2

dx2
+ V (x) (2)

This Hermitian operator can be factorized in the following way:

Ĥ = Â† Â + ε

Â† = 1√
2

[
− d

dx
+ W (x)

]

Â = 1√
2

[
d

dx
+ W (x)

]
, (3)

where ε is an undetermined constant, whereas W (x) stands for superpotential, which
satisfies the following nonlinear Riccati equation:

dW (x)

dx
+ W 2(x) = 2(V − ε) (4)

It is worth to emphasise that the SUSYQM superpotential W (x) permits construc-
tion of the supersymmetric Schrödinger equation with an exact solution that can be
obtained straightforward from the equation.

For the ground state we can write W (x) as:

W0(x) = d

dx
ln�0(x), (5)

where �0(x) is a solution of the Schrödinger equation with energy equal to E0 = ε:

Ĥ�0(x) = E0�0(x) (6)

It can be proved that the general solution of the Eq. (4) is given by a one-parameter
family of solutions:

W (x, λ) = d

dx
ln�(x) + 1

�2(x, ε)

[
λ +

x∫
dy

�2(y,ε)

] , (7)

where λ is an arbitrary parameter. It should be pointed out that a proper choice of ε and
the corresponding wave function leads to the factorization of Hamiltonian operator
Ĥ = Â†(ε) Â(ε) + ε. Â is an operator and Â† is its adjoint operator. Applying the
supersymmetric approach we can consider the following partner Hamiltonian:

ˆ̃H = E0 + Â Â† = Ĥ +
[
Â, Â†

]
(8)

corresponding to the potential energy function:

Ṽ = V (x) − d2

dx2
�0(x). (9)
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Moreover, it is well known that Â† Â has an energy spectrum with a1 ground state

which satisfies the relation Â�
(a1)
0 = 0. It should be stressed that the ˆ̃H operator has

no eigenstate corresponding to the ground state of the Ĥ operator and all the excited

energy levels of this operator are degenerate, with the eigenstates of ˆ̃H. The SUSY
procedure can be used to the process of finding a supersymmetric partnerHamiltonians
hierarchy. The process is iterated and generates the hierarchy of Hamiltonians in the
following way:

Ĥn = −1

2

d2

dx2
+ Vn(x) = Â†

n Ân + E (0)
n = Ân−1 Â

†
n−1 + E (0)

n−1, (10)

where n = 2, 3, . . . ,

Â†
n = 1√

2

[
− d

dx
+ d

dx
ln�(0)

n (x)

]
,

Ân = 1√
2

[
d

dx
+ d

dx
ln�(0)

n (x)

]
,

Vn(x) = Vn−1(x) − d2

dx2
ln�

(0)
n−1(x), (11)

E (m)
n and �

(m)
n are the eigenvalues and eigenfunction of Ĥn with the following prop-

erties [13]:

E (m)
n = E (m+1)

n−1 = · · · = Em+n−1,

�(m)
n =

[
E (m)
n − E (0)

n−1

]
Ân−1�

(m+1)
n−1 ,

�
(m+1)
n−1 =

[
E (m)
n − E (0)

n−1

]
Â†
n−1�

(m)
n , m = 0, 1, 2, . . . (12)

This procedure allows to construct the excited energy levels ofHamiltonian operator
Ĥ from the ground state of the hierarchy of the Vn potential energy functions.

As the operators Â and Â† are Hermitian we can define the following operators:

Ĥ− = Â† Â = − h̄√
2μre

d2

dx2
+ V−(x),

Ĥ+ = Â Â† = − h̄√
2μre

d2

dx2
+ V+(x) (13)

These Hamiltonians are featured by isospectrality—they have the same spectra,
except for the ground state eigenvalue. In SUSYQM Ĥ+ and Ĥ− are known as partner
Hamiltonians and are explicitly given by:

Ĥ+ = − h̄√
2μre

d2

dx2
+ W 2

0 (x) + dW0(x)

dx
= − h̄√

2μre

d2

dx2
+ V+(x) (14)
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Ĥ− = − h̄√
2μre

d2

dx2
+ W 2

0 (x) − dW0(x)

dx
= − h̄√

2μre

d2

dx2
+ V−(x) (15)

where the potentials V−(x) and V+(x) can be defined by the superpotential:

V±(x) = W 2
0 (x) ± dW0(x)

dx
(16)

These facts indicate that a Hamiltonian operator for the supersymmetric quantum
mechanics can be written as Ĥ = Ĥ+ ⊕ Ĥ−. Let us define|�n〉± as an eigenvector
of Ĥ± that corresponds to E±

n , n = 1, 2, . . . to prove the iso-spectrality of Ĥ+ and
Ĥ−

Ĥ+
(
Â |�n〉−

)
= Â Â†

(
Â |�n〉−

)
= Â

(
Â† Â |�n〉−

)

= ÂĤ− |�n〉− = E−
n Â |�n〉− (17)

This calculation proves that Â |�n〉− is an eigenstate of Ĥ+ (the corresponding
eigenvalue is E−

n ). Moreover, we can conclude from the relation Â |�0〉− = 0 (for
ground state of Ĥ−) that |�n−1〉+ = N · Â |�n〉− and E+

n−1 = E−
n .The normalization

constant N can be easily calculated as follows:

1 = 〈
�+

n |�+
n

〉 = |N |2
〈
�−

n−1 Â
†| Â�−

n+1

〉

= |N |2 〈�−
n−1

∣∣ Ĥ+
∣∣�−

n+1

〉 = |N |2 E−
n+1 = |N |2 E+

n (18)

Hence, we can write |�n〉+ and |�n〉− in the following way:

|�n〉+ = 1√
E−
n+1

Â
∣∣�−

n+1

〉

|�n〉− = 1√
E+
n−1

Â† |�n−1〉+ (19)

The Hamiltonians Ĥ+ and Ĥ− are known as the ‘bosonic’ and ‘fermionic’ super-
symmetric partners. Introducing charge operators Q̂ and Q̂†, the Lie algebra that
governs this supersymmetric system is characterized by Cooper et al. [13]:

(
Ĥ+ 0
0 Ĥ−

)
= Ĥ =

{
Q̂, Q̂†

}
, Q̂2 = 0̂,

(
Q̂†
)2 = 0̂ (20)

From this, we can construct the following commutation and anticommutation rela-
tions:

[
Q̂, Ĥ

]
= 0̂,

[
Q̂†, Ĥ

]
= 0̂,

{
Q̂, Q̂

}
= 0̂,

{
Q̂†, Q̂†

}
= 0̂ (21)
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To realize the algebra defined in Eq. (20) we consider Q̂ and Q̂† as:

Q̂ =
(
0 0
Â 0

)
, Q̂† =

(
0 A†

0 0

)
(22)

It should be underlined that
{
Ĥ , Q̂, Q̂†

}
form a closed superalgebra (the Wit-

ten superalgebra). The operators Q̂ and Q̂† induce unitary transformation between
‘bosonic’ and ‘fermionic’ vector in the Hilbert space.

Ĥ =
(
Â† Â 0
0 Â Â†

)
(23)

The above results indicate that given the eigenvalues and eigenfunction of either of
two partner isospectral potentials, the spectrum of the other one can be determined.
In the next section we will demonstrate an exemplary usage of this efficient quantum
method for a new potential energy expansion which might be of some importance in
molecular spectroscopy.

3 The energy spectrum for a modified Simons–Parr–Finlan expansion

Recently, Molski [12] introduced a generalized version of the Kratzer–Fues potential:

V (r) = De

[
1 − re(s + 1)

r

]2
, (24)

inwhich De is the dissociation energy of a diatomicmolecule. Considering the fact that
1 ≤ 1 − re(s+1)

r ≤ 1 the convergence radius for the new potential energy function is
R ∈ [re s+1

2 ,∞]
. In comparison to the original version of the Kratzer–Fues potential

we obtain R ∈ ( re
2 ,∞)

for s ∈ (−1, 0). These facts permit construction of the
expansion of the potential energy function as follows [12]:

V (r) = C0

[
r − re(s + 1)

r

]2 {
1 +

N∑
n=1

Cn

[
r − re(s + 1)

r

]n}
(25)

Here r is a distance between nuclei of atoms in diatomic systems, while re denotes
the equilibriumdistance between nuclei. The convergence radius of this expansion pro-
vides a much more accurate reproduction of the Rydberg–Klein–Rees curve than the
one obtained from the Simons–Perr–Finlan expansions. Additionally, the set of para-
meters (re, s,C0,C1, . . .) can be computed from the IR and MW spectra of diatomic
molecules with the use of the fitting procedure.

By introducing the Eq. (25) into the radial Schrödinger equation, we obtain the
following rovibrational equation:
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[
− h̄2

2μ

d2

dr2
+ V (r) + J (J + 1)h̄2

2μr2

]
�nJ (r) = EnJ�nJ (r), (26)

in whichμ denotes reduced mass of a diatomic system and J is the rotational quantum
number (J = 0, 1, 2, . . .), whereas n stands for the vibrational quantum number. After
changing the variable re

r = 1
x we can rewrite Eq. (26) in the following way:

[
− h̄2

2μr2e

d2

dx2
+ V (x) + J (J + 1)h̄2

2μr2e x2

]
�nJ (x) = EnJ�nJ (x), (27)

in which V (x) can be specified in the below simplified form:

V (x) = C0 + a1
x

+ a2
x2

+ a3
x3

+ · · · + aN+2

xN+2 (28)

The coefficients a1, a2, . . . , aN+2 are functions of C1,C2, . . . ,CN and s. From
this it can be seen that all of the ai coefficients have an energy dimension. Crucial for
the approach proposed is an assumption that the potential energy can be presented in
the following way:

V (x) =
k∑

i=1

ai
xi

, k = 2n, n = 1, 2, . . . (29)

with the following form of the superpotential:

W0(x) = α0 +
k
2∑

i=1

αi

x i
=

k
2∑

i=0

αi

x i
(30)

We can construct the following nonlinear Riccati equation:

h̄2

2mr2e

[
W 2

0 (x) + dW0

dx

]
+ E0J = V (x) (31)

The superpotential W0(x) has a zero energy solution and its corresponding eigen-
function is given by:

�0(x) = exp

⎡
⎣−

x∫
W0(x)dx

⎤
⎦ (32)

The form of W0(x) depends on the potential energy function type. Therefore, the
explicit expression forW0(x) can only be constructed for a given form of anharmonic
oscillator. If we compare the two sides of Eq. 31, we shall obtain relations between the
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potential and superpotential parameters. By choosing the supersymmetric constraint
relations we get the following exact formula for vibrational ground state eigenvalues:

E (k)
0J = −Be

⎛
⎝ a1

√
− ak

Be

a k
2+1 − k

2 Be

√
− ak

Be
+ f (ai )

⎞
⎠

2

(33)

in which Be = h̄2

2μr2e
is the rotational constant, whereas f (ai ) is the function whose

mathematical structure depends on the form of the energy potential function.
By adopting the SUSY approach and hierarchy of Hamiltonians for the calculations

we obtain the following relation for all the bound rovibrational states:

E (k)
υ J = −Be

⎡
⎣ −a1

√
− ak

Be

−a k
2+1 + f (ai ) + (

kυ + k
2

)
Be

√
− ak

Be

⎤
⎦
2

. (34)

To show how this method works we will calculate the ground states energy and all
the exited states solving systems which generate the relations between potential and
superpotential W0(x) coefficients . First we take:

V (x) =
8∑

i=1

ai
xi

. (35)

For this potential function the superpotential W0(x) adopts the following form:

W0(x) =
4∑

i=0

αi

x i
. (36)

Hence, using Eqs. 35 and 36 the coefficients ai and αi are related by the following
nonlinear algebraic system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bα2
4 = −a8

2Bα3α4 = −a7
Bα2

3 + 2Bα2α4 = −a6
2Bα2α3 + 2Bα1α4 − 4Bα4 = −a5
Bα2

2 + 2Bα1α3 + 2Bα0α4 − 3Bα3 = −a4(∗)

2Bα0α3 + 2Bα1α2 − 2Bα2 = −a3(∗∗)

−Bα1 + 2Bα0α2 + Bα2
1 = −A − a2(∗∗∗)

2BC0C1 = −a1
BC2

0 = E0

(37)

Solving this system and assuming that equations (∗), (∗∗) and (∗∗∗) are supersym-
metric constraints the ground state eigenvalue takes the following form:
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E (8)
0J = −Be

⎡
⎢⎣

a1
√

− a8
Be

a5 − a6a7a8+a37
8a28

− 4Be

√
− a8

Be

⎤
⎥⎦
2

(38)

Applying the same approach for the anharmonic potentials:

V (x) =
4∑

i=1

ai
xi

and V (x) =
6∑

i=1

ai
xi

(39)

the formula for ground state energies can be written as follows:

E (4)
0J = −Be

⎛
⎝ a1

√
− a4

Be

a3 − 2Be

√
− a4

Be

⎞
⎠

2

,

E (6)
0J = −Be

⎛
⎜⎝

a1
√

− a6
Be

a4 − a25
4a6

− 3Be

√
− a6

Be

⎞
⎟⎠

2

. (40)

It is easy to show that iterated procedure of generation of partner Hamiltonians
leads to first excited rovibrational level for the following potential energy function:

V (x) =
4∑

i=1

ai
xi

(41)

Hence, the rovibrational energy level corresponds to the following formula:

E (4)
1J = −Be

⎛
⎝ −a1

√
− a4

Be

4B
√

− a4
Be

− a3 + 2B
√

− a4
Be

⎞
⎠

2

. (42)

4 Conclusions

In this article the Schrödinger equation with new potential energy function was solved
analytically within the framework of the SUSYQM. The factorization method has
been adopted to determine the exact solutions of this equation. The algebraic method
has been applied to construct isospectral and hermitian Hamiltonians as well as super-
potentials. The exact formulas for the eigenvalues of the ground state and the excited
states have been determined by comparing appropriate potential and superpotential
parameters. The method presented allows to compute all rovibrational eigenvalues.
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The above approach will be useful in practical quantum computations of theoretical
spectroscopy and quantum chemistry of diatomic molecules.
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